
1. Introduction
Tsunamis, mainly caused by shallow subduction-zone earthquakes, can cause severe damage to coastal 
communities once they occur, especially to near-field areas. To mitigate the tsunami damage and increase 
the resiliency of coastal communities, it is crucial to better understand a tsunami source and assess its im-
pact. To better understand the tsunami source, tsunami inversion models, which can infer a tsunami source 
from observed data, have been widely developed (Satake,  2009). Depending on the input data, tsunami 
inversion models can be divided into three types. The first type is a tsunami inversion model that relies on 
seismic waveform data alone or combined with other data such as local strong motion, GPS (Global Posi-
tioning System), InSAR (Interferometric Synthetic Aperture Radar), and DART (Deep-ocean Assessment 
and Reporting of Tsunamis) data (e.g., Lay et al., 2011; Yokota et al., 2011; Yue et al., 2014). Instead of rely-
ing on seismic waveform data, the second type is a tsunami inversion model that uses tsunami waveforms 
(such as DART, tide gauge data) alone or combined with GPS and/or InSAR data (e.g., Ho et  al.,  2019; 
Romano et al., 2016; Williamson et al., 2017; Zhou et al., 2019). This methodology was first proposed by 
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Satake (1987) and is receiving increased attention, especially after the Mw 9.0 2011 Tohoku-Oki earthquake, 
because one of the main reasons for enormous casualties and tsunami damage is known to be due to un-
derestimating the earthquake's magnitude and resulting tsunami run-up by relying on the early arrival of 
seismic waveform data alone (Hoshiba & Ozaki, 2014). The third type is a tsunami inversion model that 
uses tsunami sediment deposit data to infer the historical tsunami source, especially for the paleotsunami 
events (e.g., Ioki & Tanioka, 2016; MacInnes et al., 2010; Martin et al., 2008; Nanayama et al., 2003). Once 
a tsunami source is estimated, a tsunami forward model – usually a high-fidelity physics-based numerical 
model that can simulate tsunami propagation and inundation processes from a given tsunami source – is 
then used to assess the impact of tsunamis.

A tsunami run-up, the maximum ground elevation wetted by the tsunami, is one of the important charac-
teristics to quantify the impact of a tsunami. Thanks to the tsunami survey teams such as the Internation-
al Tsunami Survey Team (ITST), there are many high-quality tsunami run-up data sets for contemporary 
events (e.g., Arcos et al., 2019; Synolakis & Okal, 2005). For this reason, the tsunami run-up distribution 
along the coastline is usually employed to validate the tsunami source and to evaluate the impact of tsuna-
mis. However, there are only a few studies that directly used tsunami run-up data to infer a tsunami source 
(e.g., Fuentes et al., 2016; MacInnes et al., 2010; Piatanesi et al., 1996). One of the main reasons is the tsuna-
mi forward model's computational burden because a tsunami inversion model requires a large number of 
tsunami forward simulations to find a tsunami source that best matches the tsunami run-up records. Even 
though several tsunami forward models employed computational techniques to improve the computational 
efficiency, such as adaptive mesh refinement and parallelization techniques (e.g., Mandli et al., 2016; Pop-
inet, 2015), estimating a tsunami run-up distribution using high-fidelity physics-based numerical models 
remains computationally intensive. For this reason, Fuentes et al. (2016) and Piatanesi et al. (1996) have 
relied on a less accurate but faster tsunami forward model than the high-fidelity model, which estimates 
run-up by multiplying an amplification factor and the maximum wave height of the offshore point, to con-
sider a large number of scenarios. On the other hand, MacInnes et al. (2010) used a high-fidelity tsunami 
forward model but considered only a handful of scenarios determined by expert judgment.

To overcome the computational burden of the high-fidelity physics-based numerical model, Lee et al. (2020) 
recently developed a tsunami forward model based on a response surface methodology, hereafter Tsunami 
Run-up Response Function (TRRF) model that can rapidly estimate a near-field tsunami run-up distribu-
tion over real topography without substantial loss of accuracy, with respect to high-fidelity models. The 
main concept of the TRRF model is that the tsunami run-up distribution can be decomposed into (1) a lead-
ing-order contribution being modeled by fault parameters using the Okal and Synolakis (2004)'s empirical 
formula and (2) a regional component that is dictated by the local topography.

This study proposes a new tsunami inversion model based on the TRRF model to infer a near-field tsunami 
source and tsunami run-up distribution from tsunami run-up records: hereafter referred to as Tsunami 
Run-up Response Function-based INVersion or TRRF-INV model. This study provides the first tsunami 
inversion model capable of giving probabilistic estimates of tsunami source information (moment magni-
tude, epicenter location, fault length, fault width, and average slip) from tsunami run-up records. Moreover, 
to our best knowledge, our work is the first attempt to provide probabilistic estimates of tsunami run-up 
distribution derived only from a small number of tsunami run-up records. We chose the northern Chile 
coastal region as a study area and investigated the performance of the TRRF-INV model based on synthetic 
tsunami run-up records, and then we applied the TRRF-INV model to real tsunami run-up records of the 
MW 8.2 2014 Iquique, Chile, earthquake.

2. Study Area
The northern Chile coastal area is an active subduction zone where the Nazca plate is being subducted un-
der the continental South American plate at high rates (about 63 mm/year, Chlieh et al., 2011) (Figure 1). 
The city of Iquique, one of the important commercial and industrial urban centers in the northern Chile 
coastal region, is exposed to significant tsunami risk considering its inhabitants (about 184,000) and critical 
coastal infrastructures (González et al., 2020). Historically, large earthquakes (MW >8.5) occurred in 1868 
and 1877 near the convergent tectonic plate interface, and the tsunamis damaged the cities in northern 
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Chile coastal region (González et al., 2020; Kulikov et al., 2005). On April 1, 2014, at 23:46:50 UTC, an MW 
8.2 earthquake occurred off the coast of Pisagua in northern Chile in an area known as a seismic gap (a 
portion of an active fault known to cause a major earthquake but not occurring for a long time) (Hayes 
et al., 2014). This earthquake was detected in the form of a seismic waveform, strong motion, and GPS data, 
and the resulting tsunami was visually detected in several DART buoys and tide gauges (e.g., An et al., 2014; 
Gusman et al., 2015; Lay et al., 2014; Schurr et al., 2014; Sepúlveda et al., 2017). Moreover, high-quality 
tsunami run-up records also exist (Catalán et al., 2015). Even though the 2014 Iquique earthquake relieved 
some amount of the accumulated deviatoric stress, several studies pointed out that the northern Chile 
coastal region still can generate a large earthquake with an associated tsunami (Cesca et al., 2016; Ruiz 
et al., 2015).

3. Method
The TRRF-INV model infers a tsunami source and tsunami run-up distribution from run-up records in four 
steps as follows (Figure 2):

 • Step 1: Set three angles (strike, dip, and rake) and earthquake depth
 • Step 2: Determine the order in which to estimate the fault parameters (epicenter latitude, epicenter 

longitude, fault length, fault width, and average slip)
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Figure 1. Map of the northern Chile coastal region. The circles represent the historical earthquake records with 
magnitude larger than 6 (U.S. Geological Survey National Earthquake Information Center). The black dashed line 
represents the plate boundary between the Nazca and South American plates. Focal mechanisms (beachballs) and 
epicenters (stars) of the 2014 Iquique earthquake given by the USGS and the gCMT (Ekström et al., 2012) are plotted in 
red and blue colors, respectively. The locations of Patache, Iquique, and Pisagua are shown in black triangles. The black 
rectangle represents the possible tsunami source area used in this study.
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 • Step 3: Repeat estimating fault parameters until one of two thresholds (see Section 3.3) is satisfied
 • Step 4: Generate earthquake scenarios based on the estimated fault parameters and save possible 

scenarios

The TRRF-INV model repeats these four steps and accumulates possible earthquake scenarios until all fault 
geometry combinations defined in step 1 are considered. And lastly, the probabilistic tsunami source and 
tsunami run-up distribution are estimated based on the accumulated scenarios.
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Figure 2. Computational flow of TRRF-INV model. The inputs are tsunami run-up records (Rp) where Np represents 
the number of run-up records. The outputs are the probabilistic estimates of moment magnitude (MW), epicenter 
latitude (LAT), epicenter longitude (LON), fault length (LEN), fault width (WID), average slip (SLP), and tsunami run-
up distribution (R). Ni is the number of combinations of three angles and earthquake depth. j is the iteration number. 
NRMSET is a total error. NMIN is the minimum number of earthquake scenarios. Note that the epicenter is the centroid 
of the fault.
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To run the TRRF-INV model, a pretrained TRRF model for the study 
area is required. In this study, we trained the TRRF model based on phys-
ics-based numerical simulations of 729 tsunamigenic-earthquake scenar-
ios (Table 1) following Lee et al. (2020). A description of how the range 
of each fault parameter is determined can be found in Appendix A. We 
used the numerical model Basilisk, an efficient hydrodynamic numerical 
model that employs an Adaptive Mesh Refinement (AMR) technique and 
a parallel computing technique (Popinet, 2015). We set the x-axis paral-
lel to North and y-axis parallel to West. We systemically simulated addi-
tional 175 scenarios to calibrate the TRRF model. Then, to validate the 
TRRF model, we simulated 20 random scenarios (hereafter called base 
scenarios), which were never used to train or calibrate the TRRF mod-
el (Table  S1). The error of the TRRF model was represented by a nor-
malized root-mean-square error (NRMSE); the RMSE normalized by the 
maximum run-up:
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where RT(x) is the tsunami run-up predicted by the TRRF model, Rp(x) is the true tsunami run-up (Basilisk 
predictions or observational data), and Np is the number of alongshore locations considered. More details 
on the TRRF model training, calibration, and validation can be found in Appendix A.

The TRRF-INV model also requires a predefined range of fault parameters. In this study, we set the fault-pa-
rameter range as shown in Table 2, which is within the range used for TRRF model validation. The rest of 
the section will describe the details of the TRRF-INV model.

3.1. Step 1: Set Three Angles and Earthquake Depth

Step 1 is to set the fault geometry (strike STR, dip DIP, rake RAK, and top-edge fault depth DEP). Most of 
the existing tsunami inversion models fixed the fault geometry to one setting because of the computational 
burden of tsunami forward simulations. However, if the uncertainty of the fault geometry is ignored, the 
tsunami source may not be reliably estimated (Ragon et al., 2018). Thus, the TRRF-INV model is designed 
to consider the uncertainty of the fault geometry by considering several combinations of fault geometry.

In this study, we considered 27 combinations (Ni = 27) where three-level values of STR, DIP, DEP and one 
RAK are considered (Table 2). The range of STR, DIP, and DEP was determined based on the Slab model 

values in the study area (Hayes et al., 2018). Since the NRMSE changes 
only up to 1% with rake angle over the range from 70°−110°, we assumed 
a pure reverse-slip mechanism (RAK = 90°). Note that the range of STR, 
DIP, and RAK used in this study is similar to the fault geometry used in 
the integrated tsunami forecast and warning system in Chile (Catalan 
et al., 2020).

3.2. Step 2: Determine an Estimation Order

Even though the TRRF model is rapid (computational time: <1 s/scenar-
io), it is still computationally intensive to simulate all possible scenarios 
listed in Table 2 (>9 million scenarios). To minimize the number of TRRF 
simulations, the TRRF-INV model determines the order in which to es-
timate the fault parameters (epicenter latitude LAT, epicenter longitude 
LON, fault length LEN, fault width WID, and average slip SLP) as follows.

LEE ET AL.

10.1029/2021JC017289

5 of 17

Fault parameter

Training Calibration and validation

Low Central High Min Max

LON (°W) 70.5 71.0 71.5 70.5 71.5

DIP (°) 10 20 30 10 30

LEN (km) 90 135 180 90 180

WID (km) 40 75 90 40 90

SLP (m) 2 4 6 2 6

DEP (km) 10 25 40 10 40

LAT (°S) 20 19.2 20.8

STR (°) 360 340 360

RAK (°) 90 70 110

Table 1 
Fault Parameters Used for TRRF Training, Calibration, and Validation

Fault parameter Min Max Interval

LON (°W) 70.5 71.5 0.1

LAT (°S) 19.2 20.8 0.1

LEN (km) 90 180 5

WID (km) 40 90 5

SLP (m) 2 6 0.5

DEP (km) 20 30 5

STR (°) 340 360 10

DIP (°) 10 30 10

RAK (°) 90 90 0

Table 2 
The Range of Fault Parameters With Interval Used in the TRRF-INV 
Model
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First, the TRRF-INV model generates scenarios for each of the five fault parameters (hereafter a reference 
fault parameter) as follows. The reference fault parameter varies for all values in Table 2. The other four 
fault parameters vary for three-level values (minimum, maximum, and average of values listed in Table 2). 
The three angles and the earthquake depth are fixed to the values set in step 1. Note that the interval of five 
fault parameters in Table 2 was set to the value where the NRMSE change within the interval is negligible 
(<0.5% point). Second, tsunami run-ups are estimated based on the TRRF model for each scenario, and then 
the NRMSE between the TRRF estimates and the run-up records is calculated. Third, the scenarios where 
the reference fault parameter value is the same are grouped, and the mean error (NRMSE) is calculated 
for each group. Fourth, the maximum difference of NRMSE  among groups (NRMSE ) is calculated. And 
lastly, once the NRMSE  is calculated for all fault parameters (LAT, LON, LEN, WID, SLP), the estimation 
order is defined as an order from the most sensitive fault parameter (which shows the largest NRMSE ) to 
the least sensitive fault parameter (which shows the smallest NRMSE ) (see example result in Text S1 and 
Figure S1).

3.3. Step 3: Estimate Fault Parameters

Following the estimation order, the fault parameters are estimated until one of two stop conditions is satis-
fied: (1) when the error does not decrease compared to the previous iteration, (2) when the number of gen-
erated scenarios is less than the threshold. From now on, the fault parameter of the ith combination (three 
angles and depth) of the jth iteration of kth estimation order will be represented as ,i j

kFP .

To estimate the first-order fault parameter ( ,
1
i jFP ), the TRRF-INV model generates scenarios for each value 

of the FP1 in Table 2 as follows. If it is the first iteration (j = 1), the TRRF-INV model generates scenarios 
considering all combinations of three-level values of FP2, FP3, FP4, and FP5 used in step 2. Otherwise, the 
TRRF-INV model generates scenarios considering all combinations of the (j − 1)th estimates of the other 
four fault parameters (    , 1 , 1 , 1 , 1

2 3 4 5, , ,i j i j i j i jFP FP FP FP ). The three angles and the earthquake depth are fixed 
to the values set in step 1. Second, tsunami run-ups are estimated based on the TRRF model for each sce-
nario, and then the NRMSE between the TRRF estimates and the run-up records is calculated. Third, the 
scenarios where the FP1 value is the same are grouped, and the base group is defined as a group that shows 

the smallest mean error (min NRMSEFP

i j

( )
,

1 ). Fourth, the model conducts the Welch's t-test between the base 
group and the other groups. Based on the t-test result, the estimates of the ,

1
i jFP  are defined as the FP1 values 

corresponding to the base group and the other groups that show no statistically significant NRMSE  differ-
ence compared to that of the base group (p-value >0.05).

The other four fault parameters are estimated in the same way, following the estimation order. The only 
difference is that, when generating the scenarios to estimate the present-order fault parameter, the jth esti-
mates of the preceding-order fault parameters are used instead of the (j − 1)th estimates. For example, when 
estimating the fault parameter of the ith combination (three angles and depth) of the jth iteration of the 
third-order ( ,

3
i jFP ), the jth estimates of the first- and second-order fault parameters ( , ,

1 2,i j i jFP FP ) are used to 
generate the scenarios, instead of the (j − 1)th estimates (  , 1 , 1

1 2,i j i jFP FP ).

Once all fault parameters ( ,i j
kFP ) are estimated, the total error ( ,i j

TNRMSE ) and the minimum number of 
generated earthquake scenarios ( ,i j

MINN ) are calculated:

NRMSE min NRMSET
i j

k

FPk

i j
,

,

( ( ))



1

5
2 (2)

  , ,( ) 1, 2, , 5i j i j
MIN FPk

N min N where k (3)

where ,i j
FPk

N  is the number of earthquake scenarios in the base group to estimate the ,i j
kFP . Then the TR-

RF-INV model decides whether to stop the iteration based on the two stop conditions:
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, , 1i j i j
T TNRMSE NRMSE (4)

,i j
MIN ThresholdN N (5)

The first stop condition (Equation 4) is when the total error is not reduced compared to the previous iter-
ation. Note that the first stop condition is only checked after the second iteration (j ≥ 2). The second stop 
condition (Equation 5) is when the minimum number of generated earthquake scenarios is less than the 
threshold (NThreshold). The larger the threshold, the less precise the model is, and the smaller the threshold, 
the more likely the error distribution is not to satisfy normality. In this study, we set the threshold (NThreshold) 
to 10, balancing the model precision and normality of the error distribution. If one of the stop conditions 
is satisfied at the jth iteration, the model stops estimating the fault parameters, and the fault parameter 
estimates of the (j − 1)th iteration are saved. Otherwise, the TRRF-INV model will repeat the procedure 
mentioned above (see example result in Text S2 and Figure S2).

3.4. Step 4: Generate and Save Earthquake Scenarios

The last step is to generate the earthquake scenarios based on the estimated fault parameters and save the 
possible scenarios where the NRMSE is smaller than the threshold. To be specific, the TRRF-INV model 
calculates the moment magnitude using the following equations (Aki, 1966; Hanks & Kanamori, 1979):

 (6)

  ( )i i i i
oM LEN WID SLP (7)

where Mo is a seismic moment (Nm), μ is the rigidity modulus of the Earth's crust (Nm−2), and the units of 
fault length (LEN), fault width (WID), and average slip (SLP) are in meters. In this study, we assumed that 
the rigidity modulus μ is 3.5 × 1010 Nm−2 in northern Chile coastal region following Shrivastava et al. (2019). 
Second, the TRRF-INV model generates scenarios considering all combinations of the estimated epicenter 
(LATi, LONi) and the three fault parameters (LEN, WID, SLP) within the range of moment magnitude ( i

WM ). 
The three angles and the earthquake depth are fixed to the values set in step 1. Third, tsunami run-ups are 
estimated based on the TRRF model for each scenario, and then the NRMSE between the TRRF estimates 
and the run-up records is calculated. Finally, the TRRF-INV model saves the earthquake scenarios where 
the corresponding NRMSE values are smaller than the threshold ( i

ThresholdNRMSE ) defined as follows:

           
i i i i
ThresholdNRMSE min max minNRMSE NRMSE NRMSE (8)

where NRMSEi is a list of the NRMSE values of the generated scenarios, and α is a constant that determines 
the threshold. In this study, after testing various α values, we set the α to 0.2 to balance the efficiency and the 
accuracy of the TRRF-INV model (Text S3 and Figure S3).

The TRRF-INV model repeats the process from step 1 to step 4 until all combinations of three angles and 
earthquake depth are considered (i = Ni). Once all combinations are considered, the TRRF-INV model es-
timates the probabilistic tsunami source and tsunami run-up distribution based on the accumulated earth-
quake scenarios.

4. Results
4.1. Performance on Synthetic Scenarios

To validate the TRRF-INV model, we generated 200 synthetic scenarios as follows. For each of the 20 base 
scenarios (Table S1), we made 10 scenarios by randomly selecting a few run-ups from the tsunami run-up 
distribution of Basilisk simulation. In this test, we fixed the number of run-up records (Np = 20) to make the 
number of run-ups similar to the 2014 Iquique tsunami run-up record. Note that only these 20 run-up data 

     
2 log 9.05
3

i i
W oM M
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were provided to the TRRF-INV model as an input while the true values (the earthquake fault parameters 
and the tsunami run-up distribution) were intentionally concealed during the TRRF-INV model run. Here, 
we will first present the detailed result based on one of the synthetic scenarios (Figure 3) and then highlight 
the overall performance of the TRRF-INV model (Figure 4).

Figure 3 shows the results of the scenario with the smallest error for moment magnitude but the largest 
error for the tsunami run-up distribution among the 10 random scenarios for Case 1 in Table S1. Overall, 
the probabilistic estimates of tsunami source agree well with the true values for this synthetic scenario 
(Figure 3a). We defined the error (e) as the estimated value (that showed the highest probability) minus 
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Figure 3. The TRRF-INV model outputs for the synthetic scenario. (a) Probabilistic estimates of tsunami source where 
the black lines and stars represent the true values (uniform slip assumed). (b) Probabilistic tsunami run-up distribution. 
The light red area represents the full range of run-up, and the red line represents the median. The black line is true 
tsunami run-up distribution. The black circles are the input of the TRRF-INV model. (c) The probability density 
function (red curve) compared to the true run-up (black line) at three locations.
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the true value. The TRRF-INV model slightly overestimated the MW (e  =  0.04), LON (e  =  0.014°), LAT 
(e = 0.124°), and WID (e = 19 km), while the model slightly underestimated the SLP (e = −0.25 m). Even 
though the LEN shows a relatively large error (e = −39 km), the true value falls within the high probability 
region (>0.6%). In Figure 3b, we plot the probabilistic estimate of the tsunami run-up distribution. The 
result shows that the probabilistic estimate of the TRRF-INV model agrees well with the true tsunami 
run-up distribution, except near the underestimated Patache area. The NRMSE between the true value and 
median of estimates was 8.37% when we only compared the 20 input locations (NRMSEp) and 8.41% when 
we compared the entire locations (NRMSEt). We defined a success ratio (SR) as a ratio of the number of 
locations where the true run-up value falls within the range of run-up estimates (light red area in the upper 
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Figure 4. Performance of the TRRF-INV model based on 200 synthetic scenarios. The top three rows show the error (e) distribution of moment magnitude 
(MW), epicenter longitude (LON), epicenter latitude (LAT), fault length (LEN), fault width (WID), average slip (SLP), and the run-ups at three key locations 
(Patache, Iquique, and Pisagua) where the e is defined as the estimated value minus the true value, and the MAE represents the mean absolute error. The 
bottom row shows the histograms of the number of filtered scenarios (NS), success rate (SR), and the normalized root-mean-squared error (NRMSEt). The mean 
and the standard deviation (Std) are denoted within each panel.
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panel of Figure 3b). Moreover, the error (e) of run-up at three key locations (Patache, Iquique, and Pisagua, 
see Figure 1) was calculated by subtracting the true value from the median of the fitted distribution. In the 
case shown in Figure 3, the TRRF-INV model yields the SR of 88.68% and small errors at three key locations 
(|e| ≤ 0.2 m).

Figure 4 summarizes the result of all 200 synthetic scenarios where MAE represents the mean absolute 
error.

MAE
n

e
i

n

i












1

1

 (9)

where ei is the error of the ith scenario and n is the total number of scenarios. Overall, the TRRF-INV model 
provides a reasonable first-order estimates of tsunami source, especially for the moment magnitude MW 
(MAE = 0.04), and the epicenter latitude LAT (MAE = 0.09°). Moreover, the TRRF-INV model estimates 
the tsunami run-up distribution quite well only with the 20 run-up data (mean SR = 95.16%), especially 
in Iquique (MAE = 0.12 m) and in Pisagua (MAE = 0.18 m). The mean NRMSEt is about 6.82%, which is 
similar to the error of the TRRF model itself.

4.2. Performance Using the 2014 Iquique Tsunami Run-up Records

To evaluate the performance of the TRRF-INV model on a real tsunami event, we applied the TRRF-INV 
model to infer the tsunami source and tsunami run-up distribution from the 2014 Iquique tsunami run-
up records (Catalán et al., 2015) and then compared our results with the United States Geological Survey 
(USGS) report, the global Centroid Moment Tensor (gCMT) solution, and the other tsunami inversion mod-
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Figure 5. Probabilistic estimates of tsunami source based on the 2014 Iquique tsunami run-up records. The black line and star represent the United States 
Geological Survey (USGS) report result. The blue line and star represent the global Centroid Moment Tensor (GCMT) solution. The green line and star 
represent the An et al. (2014)'s finite fault inversion (FFI) model result.
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el result (An et al., 2014). To match the resolution of run-up records with the grid interval of the TRRF-INV 
model (0.004°), we used the mean value if there were more than one run-up record within a grid.

Figure 5 shows the first output of the TRRF-INV model based on the 2014 Iquique tsunami run-up records. 
The results show that the estimated MW (= 8.13) falls within the range between the MW of gCMT and that 
of USGS. The estimated epicenter (−19.7°, −70.7°) strongly agrees with the epicenter of USGS and that of 
gCMT. The relatively large probability, though not the largest, was shown near the plate boundary (−19.8°, 
−71.5°). Since there is no true value for the fault geometry (LEN, WID, SLP), we compared the TRRF-INV 
model result with the An et al. (2014)'s finite fault slip distribution. The estimated slip (SLP = 5.5 m) is 
slightly larger than the average slip of An et al. (2014). The estimated fault length (LEN = 135 km) and fault 
width (WID = 90 km) resembles the fault size of An et al. (2014). Note that we defined the average slip and 
the fault size of the An et al. (2014)'s slip distribution based on the finite faults where the slip is larger than 
3 m.

Figure 6 shows the second output of the TRRF-INV model based on the 2014 Iquique tsunami run-up re-
cords. The results show that the tsunami run-up distribution based on the TRRF-INV model is reasonably 
matched with the run-up records. The estimated run-ups at Iquique and Pisagua agree with the observa-
tions very well (|e| = 0.2 m), while the TRRF-INV model underestimates the observed run-up of 1.2 m at 
Patache (see Figure  6c). Note that we used the nearest run-up records to compare the run-ups at three 
key locations. To compare the performance of the TRRF-INV model and other tsunami inversion models 
in estimating the tsunami run-up distribution, we simulated the 2014 Iquique tsunami based on the An 
et al. (2014)'s tsunami source using the same Basilisk simulation condition used to develop the TRRF model 
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Figure 6. (a) A probabilistic tsunami run-up distribution based on the 2014 Iquique tsunami run-up records. The light red area represents the full range of 
estimated run-up, and the red line represents the median. The green dashed line is a tsunami run-up distribution based on the An et al. (2014)'s finite fault 
inversion (FFI) source, and the black circles are the 2014 Iquique tsunami run-up records. (b) Bathymetry map of the study area. Yellow and white dashed lines 
represent the −200 and −1000 m isobaths. (c) The probability density function of the TRRF-INV model estimates (red curve) compared to the measured run-up 
(black line) at three key locations.
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in this study. The tsunami run-up distribution estimated by the An et al. (2014)'s tsunami source shows a 
larger error (RMSEp = 1.37 m) than the TRRF-INV model result (RMSEp = 0.87 m), underestimating the 
tsunami run-ups, especially in the area between the Patache and Iquique.

5. Discussion
Even though there was a couple of synthetic scenarios that showed a poor agreement in a tsunami source 
and/or run-ups, it is worth noting that the TRRF-INV model provides reasonable first-order estimates in 
most of the cases, given that the TRRF-INV model only used the 20 run-up data.

In the 200 synthetic-scenario test (Figure 4), the mean absolute error (MAE) of the epicenter latitude (LAT) 
was twice smaller than that of the epicenter longitude (LON). This may be attributed to the orientation of 
the coastline and the earthquake fault used in this study. We assumed that the coastline was parallel to the 
north-south direction, and the strike direction was parallel or inclined up to 20° to the coastline. In this 
condition, the change of the tsunami run-up distribution is more sensitive to the epicenter latitude (LAT), 
and thus the TRRF-INV model can distinguish a relatively small change of the epicenter latitude (LAT). 
Similarly, the fact that the change of the tsunami run-up distribution was more sensitive to the fault width 
(WID) than the fault length (LEN) can explain the mean absolute error (MAE) of the fault width (WID) that 
was twice smaller than that of the fault length (LEN).

The TRRF-INV model shows a relatively large run-up error in Patache even though the average run-up of 20 
base scenarios (Table S1) in Patache was similar to that in Iquique and Pisagua (Figure 4). Similar pattern 
was also found in the case study of the 2014 Iquique tsunami (Figure 6). We interpret this large error at Pa-
tache as a result of the tsunami-source direction that was mostly oriented toward the Iquique-Pisagua area 
(Table S1). In this condition, tsunami waves arrived at Patache would have been relatively more affected 
by the secondary factors related to the local bathymetry effects (Catalán et al., 2015; González et al., 2020), 
which is not directly considered in the TRRF model, than the tsunami waves at Iquique and Pisagua.

In Figure 5, the TRRF-INV model slightly overestimated the slip and the fault size compared to the average 
slip and the fault size of the An et al. (2014)'s slip distribution. This may be attributed to the bathymetry/
topography grid resolution, and the uniform slip distribution assumption in TRRF-INV modeling. To be 
specific, we used the 15 arc-second resolution grid (GEBCO Compilation Group, 2019) to model the tsuna-
mi inundation process. However, several studies showed that numerical simulations based on coarser grid 
resolution (>50 m) might underestimate the run-up (e.g., Muhammad & Goda, 2018). Similar behavior was 
observed for the 2014 Iquique tsunami simulation in Catalán et al. (2015). Catalán et al. (2015)'s run-up 
predictions fit well with the 2014 Iquique tsunami observations for the area where the higher resolution 
grid (1 arc-second) was used, and the run-up predictions were underestimated for the area where the lower 
resolution grids (120, 30, and 6 arc-second) were used. Second, it is well known that uniform slip distribu-
tion may underestimate the run-up (Becerra et al., 2020; Carvajal & Gubler, 2016; Geist & Dmowska, 1999; 
Melgar et al., 2019). On that ground, the TRRF-INV model may overestimate the slip and the fault size 
when fitting the tsunami run-up observations. Similarly, the underestimation of run-up in the numerical 
simulation based on An et al. (2014)'s slip distribution in Figure 6 may be attributed to the bathymetry/
topography grid resolution.

In the 2014 Iquique tsunami case, the largest run-up was predicted near the epicenter latitude, with run-up 
becoming smaller with increased distance from the epicenter latitude (see red line in Figure 6a). A relatively 
small run-up was predicted at Pisagua compared to the run-up in the nearby region. This may be related 
to the coastal morphology at Pisagua, which has a narrow platform less than 150  m wide between the 
coastline and the coastal cliff, while the surrounding area is dominated by tall, steep coastal cliffs (Catalán 
et al., 2015). Overall, a relatively larger run-up is associated with the presence of large-scale bays (see Fig-
ure 6b). This may be due to the shelf resonant at large-scale bays, as discussed in Catalán et al. (2015). How-
ever, it should be noted that since this study only simulated 2 h of tsunami elapsed time, the results may not 
capture some of the long period oscillations and the resulting late arrival peak run-up that could be caused 
by the shelf resonant and edge waves.
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We conducted two additional tests to analyze the sensitivity of the TRRF-INV model depending on the 
number and the uncertainty of run-up records (Figure 7, Figures S4–S11). First, we investigated the perfor-
mance of the TRRF-INV model depending on the number of run-up records (Np = 2, 3, 5, 10, 20, 40) (Fig-
ure 7a). For each number (Np), a total of 200 scenarios were considered by generating 10 random scenarios 
for each of the 20 base scenarios (Table S1). The results showed that the error (e) decreased as the number 
of run-up records (Np) increased in general. Note that the performance is similar after Np = 20 because of 
the error the TRRF model itself has. Second, we investigated the performance of the TRRF-INV model as 
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Figure 7. Performance of the TRRF-INV model depending on (a) the number of run-up records (Np) and (b) the 
uncertainty of run-up records. The error (e) is defined as the estimated value minus the true value. The StdU represents 
the standard deviation of uncertainty in meters. Each box-whisker plot consists of 200 random scenarios. The box 
symbol shows the interquartile range (box boundary) and median (horizontal line). The lower (upper) whisker is 
defined as 1.5 times the interquartile range below (above) the first (third) quartile. The data beyond the whiskers are 
plotted as an outlier (diamond).
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the uncertainty of run-up records increased (Figure 7b). The number of run-up records (Np = 20) was fixed, 
and the uncertainty of run-up values was generated randomly from a normal distribution with a standard 
deviation (StdU = 0, 0.5, 1.0 m) and zero mean. For the input run-ups that showed negative values after 
considering the uncertainty, we replaced them with zeros to prevent unrealistic negative run-up values. The 
results showed that the error (e) increased as the uncertainty of run-up increased in general. The TRRF-INV 
model tends to overestimate the moment magnitude (MW), fault length (LEN), fault width (WID), average 
slip (SLP), and run-ups at three key locations as the uncertainty increases. This is because the number of 
input run-ups replaced by zero is likely to increase as the uncertainty increases. These two tests suggest that 
the optimum conditions for achieving the convergent performance of the TRRF-INV model in northern 
Chile are approximately 20 observed run-up records with less than 0.5 m of uncertainty.

It is important to note that the performance of the TRRF-INV model depends on not only the run-up records 
but also several other factors such as uncertainty in fault parameter range and earthquake slip complexity. 
To be specific, we assumed that the fault parameter range in Table 2 is large enough to represent the un-
certainty of fault parameter. However, depending on the target earthquake event (e.g., ancient earthquake 
events), the uncertainty in fault parameter range may be larger than the fault parameter range considered 
here and shown in Table 2. Thus, future studies should evaluate how the accuracy and efficiency of the 
TRRF-INV model vary as the fault parameter range changes. Second, we only tested the TRRF-INV model 
for up to about MW 8.3 earthquake, assuming a uniform slip distribution. And, the 2014 Iquique earthquake 
rupture can be considered as a compact and centered slip distribution compared to other large earthquakes 
(Chen et al., 2016). Thus, it is necessary to investigate further the performance of the TRRF-INV model for 
larger magnitude earthquakes with more complex slip distributions.

6. Conclusions
The capability to understand a tsunami source and its impact is crucial in robust tsunami hazard assess-
ment. To date, several tsunami inversion models have been developed, relying on several types of measured 
data such as seismic waveform, strong motion, GPS, InSAR, DART, and tide gauge data. Compared to these 
data, a tsunami run-up record has not been used widely to infer a tsunami source and tsunami run-up dis-
tribution because of the computational burden of tsunami forward simulations. In this study, we propose a 
new tsunami inversion model, called TRRF-INV model, which can infer a probabilistic near-field tsunami 
source and a probabilistic tsunami run-up distribution from tsunami run-up records. The TRRF-INV model 
has overcome the computational burden of tsunami forward simulations by adopting the TRRF model (Lee 
et al., 2020) that can rapidly estimate the alongshore tsunami run-up distribution from the earthquake fault 
parameters. The synthetic tests based on 1,600 scenarios have confirmed that the TRRF-INV model can pro-
vide not only reasonable estimates of tsunami source to first order but also accurate tsunami run-up distri-
bution only with 20 run-up values with less than half a meter of uncertainty. The overall agreement on the 
earthquake magnitude and the epicenter of the 2014 Iquique tsunami event was satisfactory compared to 
the USGS report and gCMT solution, which supports the effectiveness of the TRRF-INV model. We believe 
that the TRRF-INV model has the potential for supporting accurate hazard assessment by providing new 
insights from tsunami run-up records into the tsunami source and its impact. The TRRF-INV model will 
be beneficial to validate the tsunami source estimated from existing tsunami inversion models, or the TR-
RF-INV model can serve as a starting point for constraining the tsunami source. Moreover, the TRRF-INV 
model can be potentially applied to estimate a tsunami source and its impact for ancient events where no 
data other than run-up estimates derived from sediment deposit data exists.

Appendix A: TRRF Training, Calibration, and Validation
To train the TRRF model for the northern Chile coastal region, 729 (= 36) tsunamigenic-earthquake sce-
narios were simulated. The 729 scenarios were generated in three-level factorial design (low, central, and 
high) of six fault parameters (LON, DIP, LEN, WID, SLP, DEP) as listed in Table 1. Note that the epicenter is 
the centroid of the fault. The range of the epicenter longitude LON was determined based on the historical 
earthquake records in the northern Chile region (Figure 1). The range of the fault length LEN, fault width 
WID, and slip SLP was set considering the moment magnitude (MW = 8.2) of the 2014 Iquique earthquake. 
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The minimum LEN and the minimum WID were set to 90 and 40 km, respectively, considering the uncer-
tainty (1σ) of Blaser et al. (2010)'s scaling law. The maximum LEN was set to 180 km based on the assump-
tion that the uniform slip distribution is applicable up to 180 km. The maximum WID was limited to 90 km 
considering the distance between the plate boundary and the coastline. The range of the dip angle DIP 
and the depth of the top edge DEP were determined based on the tectonic characteristics of the northern 
Chile region (Comte & Suárez, 1995; Hayes et al., 2012; Shrivastava et al., 2019). In order to apply the Okal 
and Synolakis (2004)'s empirical formula, the strike angle (STR) was set parallel to the coastline, and the 
rake angle (RAK) was set to the angle that makes the strike direction perpendicular to the coastline. The 
epicenter latitude (LAT) was fixed to the near point of the city of Iquique (20°S). The initial free surface dis-
placement was calculated using the Okada (1985)'s equations assuming an instantaneous fault rupture. The 
bathymetry and topography data were from the 15 arc-second data set (GEBCO Compilation Group, 2019). 
The bottom drag coefficient of a quadratic drag law was fixed to 10−4. To reduce the computational burden, 
2 h of tsunami propagation and inundation were simulated after confirming that the peak run-up values 
along the coastline occurred within 2 h for several synthetic earthquake scenarios. The maximum water 
level was interpolated bilinearly onto a regular grid (0.004° intervals). The origin was set to (20°S, 71°W), 
and it was used as a reference point in the Vincenty (1975)'s formula to change the coordinate system from 
a spherical coordinate system to a Cartesian coordinate system.

To calibrate the TRRF model, we systemically simulated two groups of scenarios. First, 75 scenarios were sim-
ulated where the fault parameters were selected as follows. We set 15 reference scenarios by randomly select-
ing seven fault parameters (LAT, LON, DIP, LEN, WID, SLP, DEP). For each reference scenario, five scenarios 
were generated where STR is 340°, 350°, 0°, 10°, and 20°, respectively, while RAK was fixed to 90°. Second, 100 
scenarios were simulated where the fault parameters were selected as follows. We set 10 reference scenarios 
by randomly selecting the seven fault parameters (LAT, LON, DIP, LEN, WID, SLP, DEP). For each reference 
scenario, 10 scenarios were generated where STR is 340°, 350°, 0°, 10°, and 20°, respectively, while RAK varies 
from 70° to 110° at intervals of 10°. Based on the simulation results, the TRRF model was calibrated as follows:

 
      


0 637 0 063 133 65 340 360

0 637 0 063

. . . ,

. .

STR RAK STR

STR RAK      




 95 67 0 20. , STR
 (A1)

    0.147 103.23RAK (A2)

where θ is the adjusted strike angle and λ is the adjusted rake angle, used to consider the case where the 
strike direction is not parallel to the coastline and/or the slip direction is not perpendicular to the coastline. 
More details on the calibration procedure and how the values (θ and λ) are used to estimate the tsunami 
run-up distribution can be found in Lee et al. (2020).

To validate the TRRF model, we simulated additional 20 scenarios where the fault parameters were ran-
domly selected within the range in Table  1. Note that any geological background information (e.g., the 
earthquake recurrence interval) was not considered in random sampling. The range of six fault param-
eters (LON, DIP, LEN, WID, SLP, DEP) was set to the same range used in the TRRF training. The range 
of LAT was set based on the historical earthquake activities, including the 2014 Iquique earthquake. The 
range of STR was set based on the Slab model (Hayes et al., 2018). And we assumed that the RAK can vary 
90° ± 20°. To generate scenarios similar to the 2014 Iquique earthquake, we limited the scenarios to the 
cases where the maximum run-up was larger than 3 m. The fault parameters of 20 scenarios are listed in 
Table S1. A comparison of tsunami run-up distribution between the TRRF model and the Basilisk model 
shows that the TRRF model can produce reliable run-up predictions (the range of NRMSE: 6.00%–13.92%, 
mean NRMSE = 7.90%).

Data Availability Statement
The Basilisk model used to simulate tsunamis is available at http://basilisk.fr/. The bathymetry data of the 
General Bathymetric Chart of the Ocean (GEBCO) is available at https://www.gebco.net/data\_and\_prod-
ucts/gridded\_bathymetry\_data/. The data and codes used in this paper can be accessed via repository: 
https://doi.org/10.17603/ds2-ej26-wa59.
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